
Crowe Logic Pro IDE
AI-Powered Development Environment
AI Enhanced
ML Ready
Explorer
mycology-research
ai-models
yield-predictor.py
python
species-classifier.py
python
growth-optimizer.py
python
data-analysis
environmental-analysis.ipynb
jupyter
yield-trends.R
r
statistical-models.py
python
automation-scripts
data-collection.py
python
report-generator.ts
typescript
monitoring-alerts.js
javascript
AI Code Generator
AI-Generated Code
# Welcome to Crowe Logic Pro IDE # AI-Powered Development Environment import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt # Natural Language AI Code Generation Example # Try typing: "Create a machine learning model to predict mushroom yield" class MycoMLModel: def __init__(self): self.model = RandomForestClassifier(n_estimators=100) self.features = [] def prepare_data(self, environmental_data): """ Prepare environmental data for ML model training """ # Temperature, humidity, CO2, light features features = environmental_data[['temp', 'humidity', 'co2', 'light']] return features.fillna(features.mean()) def train_model(self, X, y): """ Train the yield prediction model """ self.model.fit(X, y) return self.model.score(X, y) def predict_yield(self, environmental_conditions): """ Predict mushroom yield based on environmental conditions """ return self.model.predict(environmental_conditions) # Example usage model = MycoMLModel() print("AI-Generated ML Model Ready for Mycology Research!")